Enrollment No: _____ Exam Seat No: _____ C. U. SHAH UNIVERSITY **Summer Examination-2020**

Subject Name: Linear Electronics

	Subject Code: 4TE03LNE1		Branch: B.Tech (CE)			
	Semester	Date : 2	29/02/2020	Time : 02:30 To 05	5:30 Marks : 70	
	Instructi	ons:				
	(1) I	Ise of Programmable	e calculator & any off	ner electronic instrum	ent is prohibited.	
	(1) (2) I	nstructions written o	n main answer book	are strictly to be obey	ed	
	(2) I (3) I)raw neat diagrams a	and figures (if necess	arv) at right places	cu.	
	(3) (4)	ssume suitable data	if needed	ary) at fight places.		
	(+) 1	Issume suitable data	II liceded.			
Q-1		Attempt the follow	ving questions			(14)
	a)	A transistor has	pn junctions.			
		A) 1	B) 2	C) 3	D) 4	
	b)	The element that has	the largest size in a tra	nsistor is		
		A) Collector	B) Base	C) Emitter	D) None	
	c)	The emitter of a trans	sistor is doped.			
		A) Moderately	B) Lightly	C) Heavily	D) None	
	d)	In a transistor, $I_C = 1$	00 mA and $I_E = 100.5$	mA. The value of β is		
		A) 100	B) 50	C) 200	D) None	
	e)	If the value of collect	tor current I _C increases	, then value of V _{CE}		
		A) remains same	B) decreases	C) increases	D) None	
	f)	The operating point i	s also called the			
		A) Cut-off point	B) Saturation point	C) Quiescent point	D) None	
	g)	If operating point is s	shifted towards	point then	cycle will clipped	
		A)saturation, upper	B) cut off, lower	C) mid-point	D) both A and B	
	h)	Transistor biasing rej	presents Condition	n.	D) M	
	•	A) ac	B) dc	C) Both ac and dc	D) None	
	i)	The stabilization of c	perating point in poter	itial divider method is p	rovided by	
		A) R_E consideration	B) R _C	C) V _{CC}	D) None	
	•`	T 1 A 1'C	consideration	consideration		
	J)	In class A amplifier,	the operating point	on d. c. load line.		
	• `	A) Cut-off	B) Middle	C) Saturation	D) None of above	
	K)	Input resistance of ar	D) infinite	···	D) low	
	I)	A) high	B) infinite	C) medium	D) low	
	I)	An open loop gain of	an ideal op-amp	() infinite	D) madimu	
		A) nign In nagative feadh1-	D) IOW	C) Infinite	D) meaium	
	m)	in negative feedback	phase difference betwe	een input and output is $(2)^{2}(0)^{\circ}$	D) Doth A and C	
)	A) U Which oscillator has	D) 180 high ost stability?	C) 300	D) Both A and C	
	n)	Λ Columnator has	D) Hortlow	C) Crevetel	D) Nona	
		A) Colpius	D) namey	C) Crystal	D) None	

Q-2 Attempt all questions

Q-4

Q-5

Q-6

Q-7

Q-8

- (a) State different transistor connection circuits. Draw the CB circuit and derive the equation of current amplification factor α and collector current I_C . In a CB **07** connection, α is 0.9. If the I_E is 1mA, determine the value of I_B .
- (b) Derive the relationship between leakage currents (I_{CBO} and I_{CEO}) in terms of α and β . If $I_{CBO} = 0.2 \ \mu$ A, $I_{CEO} = 20 \ \mu$ A and $I_C = 1$ mA, find the value of α , β , I_E 07 and I_B .

Q-3 Attempt all questions

(a) Determine V_{CE} and V_{CB} in the transistor circuit shown in Figure below. The transistor is of silicon and has $\beta = 150$.

07

14

	CE circuit, if $V_{CC} = 12V$ and $R_C = 6 k\Omega$, draw the dc load line. What will be the	07
	Q point if zero signal base current is 20μ A and $\beta = 50$?	
	Attempt all questions	
(a)	What is faithful amplification? State and explain in detail with illustrations different conditions to be fulfilled to achieve faithful amplification in a transistor amplifier.	07
(b)	Enlist different transistor biasing methods. Explain any one of them in detail with circuit diagram.	07
	Attempt all questions	
(a)	Explain with a diagram, the working of a class B push-pull power amplifier.	07
(b)	Derive the equation for overall gain for positive and negative feedback.	07
	Attempt all questions	
(a)	Explain in detail inverting and non-inverting amplifier using Op-Amp with neat circuit diagrams.	07
(b)	Explain in detail differentiator using Op-Amp with neat circuit diagram.	07
(a)	Draw and explain in detail voltage series feedback amplifier	07
(\mathbf{u})	Explain with the help of circuit diagram working of crystal oscillator	07
(0)	Attempt all questions	07
(a)	Draw and explain in detail voltage shunt feedback amplifier.	07
(b)	Explain with the help of circuit diagram working of Colpitts oscillator.	07

